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Critical dynamics of the kinetic Glauber-Ising model on hierarchical lattices
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The critical dynamics of the kinetic Glauber-Ising model is studied on a family of the diamond-type
hierarchical lattices with various branches. By carrying out the time-dependent real-space renormalization-
group transformation to the master equation of the systems considered, the dynamic exponent is calculated. We
find that the dynamic exponent depends on fractal dimensiondf or the branch numberm in a generator, and
that it increases with the increase ofdf or m. We notice that for the case ofm51 ~one-dimensional spin chain,
df51) our resultz52 is the same as the exact result obtained by Glauber, and for the case ofm52 ~the
simplest one in the diamond-type hierarchical lattices,df52) the exponentz52.626 is higher than those of the
two-dimensional regular lattice and the triangular lattice.
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I. INTRODUCTION

In the field of dynamical critical phenomena of spin sy
tems, our main interest is in the study of the long time b
havior of the system which is most strongly affected by cr
cal fluctuations, and an important task is to investigate
scaling behavior of the relaxation timet of the system. Both
theory and experiment show that the relaxation time dive
near the critical point, i.e., there is the phenomenon ca
critical slowing down. Based on conventional theory@1,2#,
the relation oft with j can be characterized ast;jz, where
j is the correlation length (j→` when temperature ap
proaches to its critical value! andz is the dynamic exponent

The time relaxation of spins on both regular~translation-
ally symmetric! lattices and fractal lattices have been exte
sively investigated in the past three decades. Except the
dimensional kinetic Glauber-Ising model and the kine
Gaussian model on regular lattices@3,4#, other models~or
other systems! have not been exactly solved so far, such
two and three-dimensional kinetic Ising models, the kine
Potts model, theXY model, and the Heisenberg model, et
or some spin models on other complex structures, e.g., f
tals, percolations, and complex networks@5–7#, etc. Some
approximate methods such as the time-dependent renor
ization group~TDRG! @8–11#, high-temperature series ex
pansion @12,13#, « expansion@14,15#, damage spreading
@16,17#, Monte Carlo simulations@18–20#, and Monte Carlo
renormalization-group~RG! calculations@21,22#, have been
used to study these systems. Among these methods, the
dependent real-space RG transformation proposed
Achiam and Kosterlitz@8# is a very useful method, especial
for fractal systems, because of the self-similar character
of fractals. In this aspect, although many works have b
done that contain Koch curves@23,24#, Sierpinski gaskets
@25,26#, Sierpinacuteski carpets@27#, and other fractal lat-
tices @28,29#, to our knowledge no result of the kineti
Glauber-Ising model has been reported so far for diamo
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type hierarchical~DH! lattices.
In this paper, by performing the TDRG to the mast

equation, we study the kinetic Glauber-Ising model on a fa
ily of the DH lattices. As a physical problem, the DH fract
is explicitly considered by Kaufman and Griffiths in th
1980s@30–32#. Comparing with other fractal lattices, the D
lattices have the following two main features:~a! they are
much more inhomogeneous, i.e., they have a much lo
symmetry than other fractals, so they can provide insig
into other low-symmetry problems, such as random magn
surfaces, and the like, and~b! the fractal contains sites with
different coordination numbers, and the coordination num
qi of site i is associated with the generating stage of
fractal. The latter leads to the difficulty of solving the R
recursion relations if we only choose the magnetic pertur
tion F(h,s) as the conventional choice, i.e.,

F~ t !5F~h,s!511(
i

hqi
~ t !s i , ~1!

where hqi
(t) is the reduced magnetic field associated w

the coordination numberqi of site i. In order to solve this
problem, we assume thathqi

(t) and hqj
(t) satisfy a certain

relation. Based on our assumption we get the RG recurs
relations, and further calculate the dynamic exponent for
DH lattices with different branch numbers. We find that t
dynamic exponent increases with an increase of the num
of the branch in a generator. We compare our results w
those of previous studies for corresponding regular lattic

The contents of the remainder of the paper is as follo
In Sec. II the formulation of the TDRG is introduced. Secti
III gives the procedure of the TDRG on a simple DH latti
and calculates the dynamical exponent. The results of s
other DH lattices are given in Sec. IV. Section V is a br
summary and discussion. Some of the more tedious calc
tions of Sec. III are given in the Appendixes.
©2004 The American Physical Society01-1
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II. FORMULATION OF THE TDRG METHOD

For convenience in Secs. III and IV, we first summar
the TDRG method of the kinetic Glauber-Ising model on
fractal lattice following Achiam@8,9,23#. Let s i(561) be
the Ising spin variable located on thei th site of the fractal
lattice. If we assume that there are only the nearest-neigh
~NN! spin interactions, the reduced Hamiltonian of the s
tem is written as

2bH5K(
^ i , j &

s is j , ~2!

where K5J/kBT denotes the interaction between two N
spinss i ands j , J is the NN exchange integral of spins,kB
is the Boltzmann constant, andT the absolute temperature
the summation is taken over nearest neighbors. We ass
that the system is in a constrained equilibrium state w
time t,0. At time t50 the constraint is removed and the
the system relaxes towards the equilibrium via an interac
with a heat bath. UsingP(s,t) denotes the time-depende
distribution function of the spin configurations
[(s1 ,s2 ,...,s i ,...,sN). After infinite time the system will
approach the equilibrium state which is characterized by
equilibrium distribution function,

Pe~s!5
1

Z
exp~2bH !, ~3!

whereZ5(s exp(2bH) is the partition function of the sys
tem. To all appearances, one has limt→` P(s,t)5Pe(s).
The dynamical model studied here was proposed by Glau
in which only single spin transition is allowed each unit tim
@3#. Based on Glauber dynamics, the time-dependent di
bution functionP(s,t) satisfies the master equation@23#

t0

d

dt
P~s,t !52(

i
~12pi !Wi~s i !P~s,t !

52(
i

L̃ i P~s,t !52(
i

L iF~s,t !, ~4!

wheret0 is a bare time scale characterizing the coupling t
heat bath, L̃ i[(12pi)Wi(s i) is the Liouville operator,
F(s,t)[P(s,t)/Pe(s) is the deviation from equilibrium,
pi is a spin-flip operator which is defined b
pi f (s1 ,s2 ,...,s i ,...,sN)5 f (s1 ,s2 ,...,2s i ,...,sN), and
Wi(s i) is the transition probability, from spins i to 2s i , of
spin s i . Wi(s i) is subject to the detailed balance conditi
L̃ i Pe(s)50 which ensures the ergodicity of the system. T
above relation cannot determine the form ofWi(s i)
uniquely. Traditionally, it is chosen as the form

Wi~s i !5FPe~2s i !

Pe~s i !
G1/2

5expS 2Ks i(
j

s j D , ~5!

where( j denotes the summation for all nearest neighbors
site i.
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To study the critical slowing down, we limit that the sy
tem relaxes to the equilibrium by an infinitely small pertu
bation. In previous papers by other authors two forms
perturbations are studied: one is magneticlike and anothe
energylike. In this paper we only consider the case of
magneticlike perturbation from equilibrium. The deviatio
F(t) is chosen as the expression~1! so that it includes a se
of operators which form an invariant subset in parame
space under TDRG transformation.

In order to get the dynamic exponent, we perform t
time-dependent real-space RG transformation to the ma
equation~4!, which consists of two steps. First, a real-spa
RG transformation by rescaling the space length, i.e.x
→x85bx, is carried out. Based on the structure features
these fractals, we adopt the decimation RG transforma
@33,34#. After an iteration of the RG transformation, som
sites vanish and others are retained. This stage can be ca
out by the following procedure: using the operatorT(m,s)
[) id(m i2s i) to multiply the master equation, wherem i is
the new spin variable andi’s are those sites retained after a
iteration of the RG transformation, and then a summation
all spinss is performed. This procedure can be described

R@ f ~s!#5(
s

T~m,s! f ~s!5 f ~m!, ~6!

wheref (s) is a function of$s i%. After the above process th
master equation~4! becomes

t0

d

dt
R@P~s,t !#52RF(

i
L iF~s,t !G . ~7!

Using the expression~1! it can be easily expressed as

t0

d

dt
RF(

i
hqi

~ t !s i Pe~s!G522RF(
i

hqi
~ t !P~ i !s i G

~8!

with P( i )[Wi Pe(s). From the expressions~5! and ~3! we
can see thatP( i ) is independent of spins i . On the left-hand
side, after the above transformationPe(s) and hqi

(t) be-

come Pe8(m) and hqi
8 (t), respectively. Obviously, it is the

same as the standard static RG transformation. In the inv
ant subspace of the parameter space (K,h), the transforma-
tion gives the recursion relations

K85RK, h85L•h, ~9!

whereK8 is a new interaction,

h5S hq1

hq2

]

D , h85S hq1
8

hq2
8

]

D ,

andL is a transformation matrix. On the right-hand side, E
~8! transformsP( i )(s) and hqi

(t) into P8( i )(m) and hqi
9 (t),

respectively, and gives the recursion relation

h95V•h, ~10!
1-2
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where

h95S hq1
9

hq2
9

]

D ,

andV is a transformation matrix as well.
The second step is the rescaling of the time. In this st

the invariant form of the master equation is restored by p
senting h9 in terms of h8, and the time rescalingt08
5b2zt0 is performed. The eigenvalues ofVL21 are the
time rescaling factor. Based on Ref.@35#, if the matricesL
andV are commuted, one has

lmax

vmax
5bz, ~11!

wherevmax andlmax are the largest eigenvalues of matric
V and L, respectively. Contrarily, the dynamic exponent
given by

lmax

vmin
5bz, ~12!

wherevmin is the smallest eigenvalues of matrixV, if the
matricesL andV are not commuted.

III. SIMPLE HIERARCHICAL LATTICE

We apply the above method to a simple hierarchical
tice which is a typical fractal and can be constructed by
iterative manner~see Fig. 1!. The initiator is a two-point
lattice joined by a single bond~construction stagen50).
Then the initiator is replaced with the generator which co
tains two branches of two bonds (n51). Replacing every
single bond on the generator itself, we get the second s
of the lattice. This procedure is infinitely repeated until
infinite lattice is formed. The most basic geometrical feat
of fractals is the fractal dimensionality which is defined a

df5
ln N

ln b
. ~13!

HereN is the total mass~or the total volume! in the generator
and b the rescaling factor. To all appearances, for the D
lattice considered here, there isN5mb, where the branch
number in a generator ism52 and the rescaling factor isb
52 ~it equals the number of bonds in one branch!. Thus, one
gets the fractal dimensionalitydf5 ln(mb)/ln b52. Moreover,
another parameter describing the geometrical feature is
order of ramificationR, hereR5`.

We focus on then-stage lattice, which can be treated
the group of many basic cells~generators!. According to the
expression~2! the reduced Hamiltonian of this system can
presented as the summation of the Hamiltonians of the b
cells, i.e.,

H5(
a

Hcell
a , ~14!
01610
e
-

t-
n

-

ge

e

he

ic

whereHcell
a 5K(sa

a1sb
a)(s1

a1s2
a), a denotes theath cell

with sitesa, b, 1, and 2 in the lattice~see Fig. 2!. Then the
equilibrium distribution function of the system is express
as

Pe~s!5
1

Z )
a

exp@K~s1
a1s2

a!~sa
a1sb

a!#, ~15!

FIG. 1. The procedure of the construction of a simple hierarc
cal lattice.

FIG. 2. The procedure of the RG transformation for the cell~or
generator! a belonging to then-stage lattice. The coordination num
bers of the cell areqa52n, qb54, andq15q252. After a step of
the RG transformation the cell is transformed to the bondab with
qa852n21 andqb852.
1-3
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and the perturbation from equilibrium can be specifica
written as in the form

F~ t !511(
a

S hqa

2n21 sa
a1

hqb

2
sb

a1h2~s1
a1s2

a! D ,

~16!

where the factors 1/2n21 and 1/2 in termshqa
sa

a andhqb
sb

a

come from the fact that sitesa andb, respectively, are in the
2n21 cells and 2 cells.

Now let us carry out the RG transformation to the Eq.~8!
for this lattice. First, we analyze the RG transformation
the magnetic fieldshi ’s. For the generatora in Fig. 2 we can
easily seeqa52n, qb54, andq15q252. Under a step of the
RG transformation the lattice is transformed from then stage
to then21 stage by tracing over the two internal spins 1 a
2 of the generator, and the number of spins becomesN8 from
N. Noting that in the above RG transformation the coordin
tion numbers of the sitesa and b have changed, i.e., the
becomeqa852n21 andqb852, respectively. Thus we can ob
tain the RG transformation relations as the form

h2n218 5 f ~h2n,h4 ,h2!, h285g~h2n,h4 ,h2!.

Unfortunately, from the relations we cannot obtained
fixed point of the RG transformation. We find thathqa

, hqb
,

and hq1
~or hq2

) cannot compose an invariant subspace.
order to overcome the difficulty, we assume that the m
netic field hqi

on site i is proportional to the coordination

numberqi , i.e., hqi
andhqj

satisfy

hqi

hqj

5
qi

qj
. ~17!

Using this assumption the perturbation from equilibrium~16!
can be reduced as

F~ t !511h2~ t !(
a

~sa
a1sb

a1s1
a1s2

a!, ~18!

and further we can calculate the dynamics exponentz by
performing the TDRG to Eq.~8!.

The decimation RG transformation of the left-hand side
Eq. ~8! can be demonstrated as

d

dt
RP~s,t !5

d

dt
RF(

i
hqi

~ t !s i Pe~s!G
5

d

dt
h2~ t !RFPe~s!(

a
~sa

a1sb
a1s1

a1s2
a!G .
~19!

In this case the operatorR can be written as in the form
01610
f

d

-

e

n
-

f

R5(
s

)
i

d~m i2s i !

5)
b

(
s1

b ,s2
b

(
sa

b ,sb
b

d~ma
b2sa

b!d~mb
b2sb

b!. ~20!

By the decimation RG transformation to the equilibrium d
tribution functionPe(s), we can easily get

RPe~s!5Pe8~m!, ~21!

wherePe8(m) is the equilibrium distribution function of the
(n21)-stage system,

Pe8~m!5
1

Z8
expF(

b
~K8ma

bmb
b!G . ~22!

Z8 is the corresponding partition function of the system,

Z85Z/AN8, A522
11tanh2 K

12tanh2 K
, ~23!

and the new parameterK8 satisfies the relation

tanhS K8

2 D5tanh2 K, ~24!

or K85 ln cosh 2K, which has been derived by Yang in th
previous article@36#. Making use of the expression~20! we
get the RG transformations ofPe(s)sa,b

a and Pe(s)s1,2
a as

~see Appendix A!

R@Pe~s!sa,b
a #5Pe8~m!ma,b

a , ~25!

and

R@Pe~s!s1,2
a #5

22~11tanh2 K !cosh4 K tanhK

A coshK8~11tanhK8!

3~ma
a1mb

a!Pe8~m!, ~26!

wheres i , j
a denotess i

a or s j
a . Substituting~25! and~26! into

~19! and noting the recursion relation~24!, one gets the left-
hand side of the master equation~8!

d

dt
RP~s,t !5

d

dt
h2~ t !(

a
S 11

2 tanhK

11tanh2 K D
3~ma

a1mb
a!Pe8~m!. ~27!

Based on the idea of the decimation RG transformation
can be also written as in the form

d

dt
RP~s,t !5

d

dt
Pe8~m!(

a
S hq

a8
8

2n21 ma
a1

hq
b8

8

2
mb

aD
5

d

dt

h28~ t !

2
Pe8~m!(

a
~ma

a1mb
a!. ~28!
1-4
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Comparing expressions~27! with ~28! one gets the recursio
relation ofh2(t) as

h28~ t !52~11tanh 2K !h2~ t !. ~29!

From the above we see that under the assumption~17! the
matrix L only contains a single element 2(11tanh 2K).
Thus, at the critical point the eigenvalue of the transform
tion matrix L of h2(t) is

l52~11tanh 2K* !. ~30!

The right-hand side of the master equation~8! is the RG
transformation of the summation of the termshqi

P( i )s i . For

this system the summation( ihqi
P( i )s i can be written as the

summation ofGa for all the cells, i.e.,( ihqi
P( i )s i5(aGa ,

where

Ga5
hqa

2n21 Pa
~a!sa

a1
hqb

2
Pa

~b!sb
a1h2~s1

aPa
~1!1s2

aPa
~2!!.

~31!

Noting thatP( i )[Wi Pe(s) is independent of spins i , then
we haveR@s1

aPa
(1)#5R@s2

aPa
(2)#50. Otherwise, by the cal

culation we get the RG transformations ofPa
(a)sa

a and
Pa

(b)sb
a as follows~see Appendix B!:

2R@Pa
~a!sa

a#5Pa8
~a!ma

aA22n21~2 coshK !2n, ~32!

2R@Pa
~b!sb

a#5Pa8
~b!mb

aA22~2 coshK !4, ~33!

where Pa8
(a)5WaPe8(m) and Pa8

(b)5WbPe8(m). Therefore,
Eqs.~31!, ~32!, and~33! give the following result of the RG
transformation:

RFhqa
~ t !

2n21 Pa
~a!sa

a1
hqb

~ t !

2
Pa

~b!sb
aG

5
hqa
9 ~ t !

2n21 ma
aPa8

~a!1
hqb
9 ~ t !

2
mb

aPa8
~b! , ~34!

where

hqa
9 ~ t !5

2~2 coshK !2n

A2n21 hqa
, hqb

9 ~ t !5
2~2 coshK !4

A2 hqb
.

~35!

The relations can also be written as the matrix form~10!,
where the matricesh, h9, andV are, respectively,

h5S hqa

hqb
D ,h95S hqa

9

hqb
9 D ,

and
01610
-

V5S 1

~11tanh2 K !2n21 0

0
1

~11tanh2 K !2

D .

Noting 11tanh2 K.1 and 2n21.2 ~for n.2), we can eas-
ily see that at the critical point the largest eigenvalue of
matrix V is

vmax5
1

~11tanh2 K* !2 . ~36!

Thus, based on the expressions~11!, ~30!, and ~36!, we de-
rive the dynamical exponent of the system as

z5
ln 2

ln b
1

ln@~11tanh2 K* !~11tanhK* !2#

ln b
, ~37!

whereb52 is the length rescaling factor associated with t
RG transformation. From Eq.~24! we can obtainK*
50.609. Therefore we getz52.626.

IV. RESULTS OF OTHER HIERARCHICAL LATTICES

In this section we give the results of the kinetic Glaub
Ising model on somem-branch DH lattices, wherem is an
arbitrary natural number. These lattices and the simplest
lattice considered in Sec. III are similar on generati
method. The only difference is here the generator containm
branches, not only two branches. The number of bonds
one branch equals 2 as well. Examples of the basic cel
these lattices are plotted in Fig. 3. According to the definit
~13! the fractal dimensionality of this family fractals isdf
511 ln m/ln 2, and the order of ramification isR5` as well.
m51 and m52, respectively, correspond to the on
dimensional lattice and the simplest DH lattice studied in
above section. As in Sec. III, the Hamiltonian of th
m-branch DH system can be expressed as in the form

2bH5K(
a

(
i 51

m

s i
a~sa

a1sb
a!, ~38!

wheres i
a ( i 51,2,...,m) are the spins of the internal sites,

2,..., andm, of the cell a in the lattice, the summation(a

FIG. 3. Some examples of the basic cell of a family of the D
lattices. ~a! m52; ~b! m54; ~c! m is arbitrary.
1-5
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TABLE I. The values ofK at the critical point and the dynamical exponentsz vs values of the fractal dimensiondf and the branch numbe
m.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
df 1 2 2.585 3 3.322 3.585 3.807 4 4.170 4.322 4.459 4.585 4.700 4.807 4
K* ` 0.609 0.361 0.261 0.206 0.170 0.145 0.126 0.112 0.101 0.091 0.084 0.077 0.072
z 2 2.626 2.769 2.930 3.087 3.235 3.372 3.500 3.618 3.728 3.831 3.927 4.017 4.103
n

th

as
a

r

in

to
ci-
-

-
-

s
e
s
e
tem
hat
an

on

f
clike
b-
e
eld
e

ter

ends

ud-

lts

t

goes over all cells of the lattice. The equilibrium distributio
function of this system is written as

Pe~s!5
1

Z )
a

expFK(
i 51

m

s i
a~sa

a1sb
a!G ,

and the perturbation from equilibrium is expressed as in
form

F~ t !511(
a

S hqa
~ t !

mn21 sa
a1

hqb
~ t !

2
sb

a1h2~ t !(
i 51

m

s i
aD .

Still consider then-stage lattice. With the same method
in Sec. III, we can carry out the decimation RG transform
tion to Eq.~8!. We should notice that in a cell of then-stage
lattice the coordination numbers of the sitesa andb areqa
5mn andqb52m, respectively, and after a step of the reno
malization transformation they becomeqa5mn21 and qb
52, respectively.

Using relation~17!, from the left-hand side of Eq.~8! we
can geth28(t)5lh2(t) with

l52mF1

2
1F~K,K8,m!G , ~39!

F~K,K8,m!5
tanhK

~11tanhK8!coshK8

~11tanh2 K !~m/2!21

~12tanh2 K !m/2 .

~39!

For the right-hand side of Eq.~8!, we have

RF(
i

~12pi !Wi P~s,t !G
52(

a
Fhqa

9 ~ t !

mn21 ma
aPa8

~a!1
hqb
9 ~ t !

2
mb

aPa8
~b!G ,

where hqa
9 (t)5A2mn21

(2 coshK)mn
hqa

, hqb
9 (t)

5A22(2 coshK)2mhqb
. The two relations can be written as

the matrix form~10!, but here

V5S 1

~11tanh2 K !mn21 0

0
1

~11tanh2 K !m

D .

Obviously, the largest eigenvalue of the matrix is
01610
e

-

-

vmax5
1

~11tanh2 K !m . ~40!

For calculating the dynamical exponent we also need
know the critical point of the systems. Carrying out the de
mation RG transformation toPe(s), one can obtain the re
cursion relation

tanh~K8/m!5tanh2 K ~41!

or K85m lnAcosh 2K @36#. By mean of Eqs.~41!, ~12!, ~39!,
and~40!, the values ofK at the critical point and the dynami
cal exponents for any value ofm can be calculated, in prin
ciple. The numerical results for some values ofm or the
fractal dimensiondf of the lattice are listed as in Table I. It i
clear that the dynamic exponentz increases with an increas
of m ~or fractal dimensiondf), which can be interpreted a
that the relaxation timet depends on the structure of th
system, i.e., the more complicated the structure of the sys
is, the longer it takes to reach the equilibrium. We notice t
the result is different from that of the kinetic Gaussi
model, which gives the resultz52 for the family of the DH
lattices@37#.

V. SUMMARY AND DISCUSSION

The kinetic Glauber-Ising model has been investigated
a family of the DH lattices with differentm, the branch num-
ber in a cell~or generator!. In order to study the relaxation o
the spins of these systems, we considered the magneti
perturbation which results in a small deviation from equili
rium. For overcoming the difficulty of inhomogeneity in th
structure of the lattices, it is assumed that the magnetic fi
hqi

in the magneticlike perturbation is proportional to th

coordination numberqi of site i. Using the assumption we
have performed the TDRG transformation to the mas
equations, and have obtained the dynamic exponentz of
these systems. We found that the dynamic exponent dep
on the branch numberm ~or various fractal dimensiondf) in
a generator, i.e., it increases with an increase ofm.

We now compare our results with those of previous st
ies for regular lattices. For the lattice withm51 (df5d
51), i.e., a one-dimensional chain, the resultz52 obtained
here is the same as that, an exact result, of Glauber@3#. For
the DH lattice with m52 (df5d52), our result is z
52.626. For a two-dimensional regular lattice, the resu
from other methods vary fromz51.4 to 2.7@38#. Some re-
sults are given as follows.

~a! z.2.7 by the block-site TDRG method in the firs
1-6
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order cumulant expansion, on a two-dimensional regular
tice @8#.

~b! z52.16 TDRG method in the second order cumula
approximation~triangular lattice! @39#.

~c! z52.16 by Linke@40#, z52.13 by Williams@41#, us-
ing the Monte Carlo simulation.

~d! z51.4 the RG Monte Carlo method by Ma@21#, and
z52.126 by Bausch@42#.

We notice that our result of the DH lattice withm52 is
higher than those of the two-dimensional regular lattice
the triangular lattice, exceptz.2.7 by the TDRG method in
the first order cumulant expansion. Noting the distinction
the df52 DH lattice with a self-similarity structure~scaling
invariance! and the two-dimensional regular lattice wi
translational symmetry, thus the difference of values of
dynamic exponent for the two kinds of lattices is reasona
In fact, in the limit of thermodynamics there are some si
with infinite coordination numbers in the DH lattice, but th
coordination numbers are all 4 in the two-dimensional re
lar lattice or 6 in the triangular lattice. Moreover, the D
lattice even may be inserted into a three-dimensional sp
not only a two-dimensional space. The result also shows
the dynamic exponent depends on not only the dimension
also on the structure of the lattice.
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APPENDIX A: CALCULATING THE EXPRESSIONS
„25… AND „26…

We calculateR@Pe(s)sa,b
a # and R@Pe(s)s1,2

a #. Noting
the expressions~15! and~20!, R@Pe(s)sa,b

a # is calculated as
follows:

R@Pe~s!sa,b
a #

5
1

Z )
b F (

s1
b ,s2

b
(

sa
b ,sb

b
d~ma

b2sa
b!d~mb

b2sb
b!G

3Pe~s!sa,b
a

5
1

Z )
b

(
s1

b ,s2
b

exp@K~s1
b1s2

b!~ma
b1mb

b!#ma,b
a

5
1

Z
AN8ma,b

a )
b

exp~K8ma
bmb

b!

5ma,b
a Pe8~m!, ~A1!

wherePe8(m) andA have been given in expressions~22! and
~23!. R@Pe(s)s1# can be calculated as
R@Pe~s!s1
a#5

1

Z )
b

(
s1

b ,s2
b

exp@K~ma
b1mb

b!~s1
b1s2

b!#s1
a

5
1

Z )
b~Þa! F (

s1
b ,s2

b
exp@K~ma

b1mb
b!~s1

b1s2
b!#G (

s1
a ,s2

a
exp@K~ma

a1mb
a!~s1

a1s2
a!#s1

a

5P8~m!A21 exp~2K8ma
amb

a!22~ma
a1mb

a!~11ma
amb

a tanh2 K !cosh4 K tanhK

522~ma
a1mb

a!~11ma
amb

a tanh2 K !cosh4 K tanhK
P8~m!

A coshK8~11ma
amb

a tanhK8!

5
22~11tanh2 K !cosh4 K tanhK

A coshK8~11tanhK8!
~ma

a1mb
a!P8~m!. ~A2!

In the last step of the above calculation we have considered that it equals zero whenma
a52mb

a , and not zero whenma
a

5mb
a (ma

amb
a51).

APPENDIX B: CALCULATION OF THE EXPRESSIONS „32… AND „33…

Noting the form of the expression~5! of the transition probabilityWi , thus P( i )[Wi Pe(s) is independent of spins i .
R@Pa

(a)sa
a# can be calculated as follows:
1-7
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R@Pa
~a!sa

a#5)
b F (

s1
b ,s2

b
(

sa
b ,sb

b
d~ma

b2sa
b!d~mb

b2sb
b!GPa

~a!sa
a

5)
b F (

s1
b ,s2

b
(

sa
b ,sb

b
d~ma

b2sa
b!d~mb

b2sb
b!G3

1

Z
sa

a)
b

exp@K~sa
b1sb

b!~s1
b1s2

b!# expF2Ksa
a(

j
s j G

5
1

Z
ma

a)
b F (

s1
b ,s2

b
exp@K~ma

b1mb
b!~s1

b1s2
b!#GexpF2Kma

a(
j

s j G ,
where( j denotes the summation for all nearest neighbors of sitei. Therefore, we have

R@Pa
~a!sa

a#5
1

Z
ma

a )
b~Þa,g,...! F (

s1
b ,s2

b
exp@K~ma

b1mb
b!~s1

b1s2
b!#G )

a,g,...
(

s1
a ,s2

a
exp@Kma

a~s1
a1s2

a!#

5
1

Z
ma

a )
b~Þa,g,...!

@A exp~K8,ma
bmb

b!#~2 coshK !2n

where the product does not containa, g,... ~they denote 2n21 cells!. Substituting the value ofA in the expression~23! into
above expression we can easily get the result~32!. In the same manner we can obtain the result~33!.
or
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